new update

This commit is contained in:
Yesen 2023-10-05 16:47:20 +03:00
parent 5db9e141f3
commit f09847ed69
6 changed files with 12 additions and 130 deletions

View File

@ -1,3 +1,3 @@
# Math Programms
[Overmaymant.py](overmaymant.py) - calculate loan overpaymant.
nothing yet

View File

@ -0,0 +1,11 @@
### Math|stat tasks
***
Here you can find statistic tasks, which can be usefull in econometric calculations
# Variance
- [average value](average_value.py) -
- [Greatest common divisor](Greatest_common_divisor.py) -
# Statistic tasks

View File

@ -34,5 +34,3 @@
# print(i * n, end="\t")
# print()

View File

@ -1,127 +0,0 @@
a = input().split()
len_a = len(a) - 1
for index, number in enumerate(a):
if len_a == 0:
print (number)
else:
if index == 0:
S = int(a[-1]) + int(a[1])
b = str(S)
elif index != 0 and index != int(len_a) :
n_index_0 = int(int(a.index(number)) + 1)
n_index_2 = int(int(a.index(number)) - 1)
n_0 = a[n_index_0]
N_2 = a[n_index_2]
S1 = int(n_0) + int(N_2)
b += " " + str(S1)
elif index == int(len_a):
S2 = int(a[0]) + int(a[-2])
b += " " + str(S2)
print (b)
x = [int(m) for m in str(b)]
print (x) в список
print (" ".join(b))
# initial_list = input().split()
# sum_list = []
# left_index = -1
# right_index = -len(initial_list) + 1
# middle_index = 0
# while middle_index < len(initial_list):
# sum_list.append(initial_list[left_index] + initial_list[right_index])
# left_index += 1
# right_index += 1
# middle_index += 1
# print(sum_list)
# a = [int(item) for item in input().split()]
# a2 = []
# for i in range(len(a)):
# if len(a) == 1:
# print(a[0])
# break
# else:
# if i == 0:
# a2.append(a[-1] + a[i + 1])
# elif i > 0 and i != len(a) - 1:
# a2.append(a[i - 1] + a[i + 1])
# else:
# a2.append(a[i - 1] + a[0])
# if a2 != 0:
# for i in a2:
# print(i, end=' ')
# a = input().split()
# a_sorted= a.sort()
# int=0
# for i, item in enumerate(a):
# if len(a) == 1:
# None
# else:
# # if a [i] == a [i+1]:
# n =
# a = input().split()
# a2 = []
# for item in a:
# c = a.count(item)
# if c > 1:
# a2.append(item)
# if c == 1:
# None
# def del_dubl(a2):
# seen = set()
# seen_add = seen.add
# return [x for x in a2 if not (x in seen or seen_add(x))]
# for i in del_dubl(a2):
# print(i, end=' ')
# удаление дубликатов
# a = input().split()
# def del_dubl(a):
# seen = set()
# seen_add = seen.add
# return [x for x in a if not (x in seen or seen_add(x))]
# print (del_dubl(a))
# n =3
# a = [[0]*n]*n
# a[0][0]= 5
# print (a)
# from scipy.stats import f
# data = pd.DataFrame({1:[3,1,2],2:[5,3,4],3:[7,6,5]}) # Here 3 groups and we are going to compare them
# def odno_disp(data):
# first_group = [i for i in data[1]] # Выделяем группы для операции над данными
# second_group = [i for i in data[2]]
# third_group = [i for i in data[3]]
# number_of_groups = len([first_group,second_group,third_group])
# all_groups = first_group+second_group+third_group # Все группы тут
# mean_of_all_groups = np.mean(all_groups) # среднее значение всей группы
# sum_of_squared_total = sum([(i-mean_of_all_groups)**2 for i in all_groups]) # Обьщая изменчивость наших данных, здесь мы расчитали сумму всех квадратов отклонение от среднего
# df_of_sst = len(all_groups) - 1 # Число степеней свободы в SST
# ssw1 = sum([(i-np.mean(first_group))**2 for i in first_group]) # для расчета суммы квадратов
# ssw2 = sum([(i-np.mean(second_group))**2 for i in second_group]) # расчитаем сумму кв всех групп
# ssw3 = sum([(i-np.mean(third_group))**2 for i in third_group])
# sum_of_squared_within = ssw1+ssw2+ssw3 # сумма квадратов внутри групповая
# df_of_ssw = len(all_groups) - number_of_groups # Число степеней свободы во внутри групповой
# # Теперь узнаем на сколько наши групповые отклоняются от общегрупповых средних
# for_minus_from_each_group = [first_group, second_group, third_group] # для минуса из каждых групп
# sum_of_squared_between = sum([number_of_groups*(np.mean(i)-mean_of_all_groups)**2 for i in for_minus_from_each_group])
# df_of_ssb = number_of_groups - 1
# F = (sum_of_squared_between / df_of_ssb) / (sum_of_squared_within / df_of_ssw)
# P_value = f.sf(F, df_of_ssb, df_of_ssw)
# if P_value >= 0.05:
# return f"Мы не отклоняем нулевую гипотезу так как P_value = {P_value}"
# else:
# return f"Мы отклоняем нулевую гипотезу то есть P value = {P_value}, H1 верна то есть минимум 2 данные различаются между собой в Генеральной совокупонсти"
# p = odno_disp(data)
#dd