new update
This commit is contained in:
parent
5db9e141f3
commit
f09847ed69
@ -1,3 +1,3 @@
|
||||
# Math Programms
|
||||
|
||||
[Overmaymant.py](overmaymant.py) - calculate loan overpaymant.
|
||||
nothing yet
|
11
practica/math/statistic/README.md
Normal file
11
practica/math/statistic/README.md
Normal file
@ -0,0 +1,11 @@
|
||||
### Math|stat tasks
|
||||
***
|
||||
Here you can find statistic tasks, which can be usefull in econometric calculations
|
||||
|
||||
# Variance
|
||||
|
||||
- [average value](average_value.py) -
|
||||
- [Greatest common divisor](Greatest_common_divisor.py) -
|
||||
|
||||
|
||||
# Statistic tasks
|
@ -34,5 +34,3 @@
|
||||
# print(i * n, end="\t")
|
||||
# print()
|
||||
|
||||
|
||||
|
@ -1,127 +0,0 @@
|
||||
|
||||
a = input().split()
|
||||
len_a = len(a) - 1
|
||||
for index, number in enumerate(a):
|
||||
if len_a == 0:
|
||||
print (number)
|
||||
else:
|
||||
if index == 0:
|
||||
S = int(a[-1]) + int(a[1])
|
||||
b = str(S)
|
||||
elif index != 0 and index != int(len_a) :
|
||||
n_index_0 = int(int(a.index(number)) + 1)
|
||||
n_index_2 = int(int(a.index(number)) - 1)
|
||||
n_0 = a[n_index_0]
|
||||
N_2 = a[n_index_2]
|
||||
S1 = int(n_0) + int(N_2)
|
||||
b += " " + str(S1)
|
||||
elif index == int(len_a):
|
||||
S2 = int(a[0]) + int(a[-2])
|
||||
b += " " + str(S2)
|
||||
print (b)
|
||||
x = [int(m) for m in str(b)]
|
||||
print (x) в список
|
||||
print (" ".join(b))
|
||||
|
||||
# initial_list = input().split()
|
||||
# sum_list = []
|
||||
# left_index = -1
|
||||
# right_index = -len(initial_list) + 1
|
||||
# middle_index = 0
|
||||
# while middle_index < len(initial_list):
|
||||
# sum_list.append(initial_list[left_index] + initial_list[right_index])
|
||||
# left_index += 1
|
||||
# right_index += 1
|
||||
# middle_index += 1
|
||||
# print(sum_list)
|
||||
|
||||
|
||||
# a = [int(item) for item in input().split()]
|
||||
# a2 = []
|
||||
# for i in range(len(a)):
|
||||
# if len(a) == 1:
|
||||
# print(a[0])
|
||||
# break
|
||||
# else:
|
||||
# if i == 0:
|
||||
# a2.append(a[-1] + a[i + 1])
|
||||
# elif i > 0 and i != len(a) - 1:
|
||||
# a2.append(a[i - 1] + a[i + 1])
|
||||
# else:
|
||||
# a2.append(a[i - 1] + a[0])
|
||||
# if a2 != 0:
|
||||
# for i in a2:
|
||||
# print(i, end=' ')
|
||||
|
||||
# a = input().split()
|
||||
# a_sorted= a.sort()
|
||||
# int=0
|
||||
# for i, item in enumerate(a):
|
||||
# if len(a) == 1:
|
||||
# None
|
||||
# else:
|
||||
# # if a [i] == a [i+1]:
|
||||
# n =
|
||||
|
||||
# a = input().split()
|
||||
# a2 = []
|
||||
# for item in a:
|
||||
# c = a.count(item)
|
||||
# if c > 1:
|
||||
# a2.append(item)
|
||||
# if c == 1:
|
||||
# None
|
||||
# def del_dubl(a2):
|
||||
# seen = set()
|
||||
# seen_add = seen.add
|
||||
# return [x for x in a2 if not (x in seen or seen_add(x))]
|
||||
# for i in del_dubl(a2):
|
||||
# print(i, end=' ')
|
||||
|
||||
# удаление дубликатов
|
||||
# a = input().split()
|
||||
# def del_dubl(a):
|
||||
# seen = set()
|
||||
# seen_add = seen.add
|
||||
# return [x for x in a if not (x in seen or seen_add(x))]
|
||||
# print (del_dubl(a))
|
||||
|
||||
# n =3
|
||||
# a = [[0]*n]*n
|
||||
# a[0][0]= 5
|
||||
# print (a)
|
||||
|
||||
|
||||
# from scipy.stats import f
|
||||
# data = pd.DataFrame({1:[3,1,2],2:[5,3,4],3:[7,6,5]}) # Here 3 groups and we are going to compare them
|
||||
# def odno_disp(data):
|
||||
# first_group = [i for i in data[1]] # Выделяем группы для операции над данными
|
||||
# second_group = [i for i in data[2]]
|
||||
# third_group = [i for i in data[3]]
|
||||
# number_of_groups = len([first_group,second_group,third_group])
|
||||
|
||||
# all_groups = first_group+second_group+third_group # Все группы тут
|
||||
# mean_of_all_groups = np.mean(all_groups) # среднее значение всей группы
|
||||
|
||||
# sum_of_squared_total = sum([(i-mean_of_all_groups)**2 for i in all_groups]) # Обьщая изменчивость наших данных, здесь мы расчитали сумму всех квадратов отклонение от среднего
|
||||
# df_of_sst = len(all_groups) - 1 # Число степеней свободы в SST
|
||||
|
||||
# ssw1 = sum([(i-np.mean(first_group))**2 for i in first_group]) # для расчета суммы квадратов
|
||||
# ssw2 = sum([(i-np.mean(second_group))**2 for i in second_group]) # расчитаем сумму кв всех групп
|
||||
# ssw3 = sum([(i-np.mean(third_group))**2 for i in third_group])
|
||||
# sum_of_squared_within = ssw1+ssw2+ssw3 # сумма квадратов внутри групповая
|
||||
# df_of_ssw = len(all_groups) - number_of_groups # Число степеней свободы во внутри групповой
|
||||
|
||||
# # Теперь узнаем на сколько наши групповые отклоняются от общегрупповых средних
|
||||
# for_minus_from_each_group = [first_group, second_group, third_group] # для минуса из каждых групп
|
||||
# sum_of_squared_between = sum([number_of_groups*(np.mean(i)-mean_of_all_groups)**2 for i in for_minus_from_each_group])
|
||||
# df_of_ssb = number_of_groups - 1
|
||||
|
||||
# F = (sum_of_squared_between / df_of_ssb) / (sum_of_squared_within / df_of_ssw)
|
||||
# P_value = f.sf(F, df_of_ssb, df_of_ssw)
|
||||
# if P_value >= 0.05:
|
||||
# return f"Мы не отклоняем нулевую гипотезу так как P_value = {P_value}"
|
||||
# else:
|
||||
# return f"Мы отклоняем нулевую гипотезу то есть P value = {P_value}, H1 верна то есть минимум 2 данные различаются между собой в Генеральной совокупонсти"
|
||||
# p = odno_disp(data)
|
||||
#dd
|
Loading…
Reference in New Issue
Block a user