i2pd/libi2pd/Crypto.h
2024-07-30 08:13:24 -04:00

303 lines
8.0 KiB
C++

/*
* Copyright (c) 2013-2024, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/
#ifndef CRYPTO_H__
#define CRYPTO_H__
#include <inttypes.h>
#include <string>
#include <vector>
#include <openssl/bn.h>
#include <openssl/dh.h>
#include <openssl/aes.h>
#include <openssl/dsa.h>
#include <openssl/ecdsa.h>
#include <openssl/rsa.h>
#include <openssl/sha.h>
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <openssl/opensslv.h>
#include "Base.h"
#include "Tag.h"
#include "CPU.h"
// recognize openssl version and features
#if (OPENSSL_VERSION_NUMBER >= 0x010101000) // 1.1.1
# define OPENSSL_HKDF 1
# define OPENSSL_EDDSA 1
# define OPENSSL_X25519 1
# if (!defined(LIBRESSL_VERSION_NUMBER) && (OPENSSL_VERSION_NUMBER != 0x030000000)) // 3.0.0, regression in SipHash, not implemented in LibreSSL
# define OPENSSL_SIPHASH 1
# endif
#endif
namespace i2p
{
namespace crypto
{
bool bn2buf (const BIGNUM * bn, uint8_t * buf, size_t len);
// DSA
DSA * CreateDSA ();
// RSA
const BIGNUM * GetRSAE ();
// x25519
class X25519Keys
{
public:
X25519Keys ();
X25519Keys (const uint8_t * priv, const uint8_t * pub); // if pub is null, derive from priv
~X25519Keys ();
void GenerateKeys ();
const uint8_t * GetPublicKey () const { return m_PublicKey; };
void GetPrivateKey (uint8_t * priv) const;
void SetPrivateKey (const uint8_t * priv, bool calculatePublic = false);
bool Agree (const uint8_t * pub, uint8_t * shared);
bool IsElligatorIneligible () const { return m_IsElligatorIneligible; }
void SetElligatorIneligible () { m_IsElligatorIneligible = true; }
private:
uint8_t m_PublicKey[32];
#if OPENSSL_X25519
EVP_PKEY_CTX * m_Ctx;
EVP_PKEY * m_Pkey;
#else
BN_CTX * m_Ctx;
uint8_t m_PrivateKey[32];
#endif
bool m_IsElligatorIneligible = false; // true if definitely ineligible
};
// ElGamal
void ElGamalEncrypt (const uint8_t * key, const uint8_t * data, uint8_t * encrypted); // 222 bytes data, 514 bytes encrypted
bool ElGamalDecrypt (const uint8_t * key, const uint8_t * encrypted, uint8_t * data); // 514 bytes encrypted, 222 data
void GenerateElGamalKeyPair (uint8_t * priv, uint8_t * pub);
// ECIES
void ECIESEncrypt (const EC_GROUP * curve, const EC_POINT * key, const uint8_t * data, uint8_t * encrypted); // 222 bytes data, 514 bytes encrypted
bool ECIESDecrypt (const EC_GROUP * curve, const BIGNUM * key, const uint8_t * encrypted, uint8_t * data); // 514 bytes encrypted, 222 data
void GenerateECIESKeyPair (const EC_GROUP * curve, BIGNUM *& priv, EC_POINT *& pub);
// AES
struct ChipherBlock
{
uint8_t buf[16];
void operator^=(const ChipherBlock& other) // XOR
{
if (!(((size_t)buf | (size_t)other.buf) & 0x03)) // multiple of 4 ?
{
for (int i = 0; i < 4; i++)
reinterpret_cast<uint32_t *>(buf)[i] ^= reinterpret_cast<const uint32_t *>(other.buf)[i];
}
else
{
for (int i = 0; i < 16; i++)
buf[i] ^= other.buf[i];
}
}
};
typedef i2p::data::Tag<32> AESKey;
template<size_t sz>
class AESAlignedBuffer // 16 bytes alignment
{
public:
AESAlignedBuffer ()
{
m_Buf = m_UnalignedBuffer;
uint8_t rem = ((size_t)m_Buf) & 0x0f;
if (rem)
m_Buf += (16 - rem);
}
operator uint8_t * () { return m_Buf; };
operator const uint8_t * () const { return m_Buf; };
ChipherBlock * GetChipherBlock () { return (ChipherBlock *)m_Buf; };
const ChipherBlock * GetChipherBlock () const { return (const ChipherBlock *)m_Buf; };
private:
uint8_t m_UnalignedBuffer[sz + 15]; // up to 15 bytes alignment
uint8_t * m_Buf;
};
#if SUPPORTS_AES
class ECBCryptoAESNI
{
public:
uint8_t * GetKeySchedule () { return m_KeySchedule; };
protected:
void ExpandKey (const AESKey& key);
private:
AESAlignedBuffer<240> m_KeySchedule; // 14 rounds for AES-256, 240 bytes
};
#endif
#if SUPPORTS_AES
class ECBEncryption: public ECBCryptoAESNI
#else
class ECBEncryption
#endif
{
public:
void SetKey (const AESKey& key);
void Encrypt(const ChipherBlock * in, ChipherBlock * out);
private:
AES_KEY m_Key;
};
#if SUPPORTS_AES
class ECBDecryption: public ECBCryptoAESNI
#else
class ECBDecryption
#endif
{
public:
void SetKey (const AESKey& key);
void Decrypt (const ChipherBlock * in, ChipherBlock * out);
private:
AES_KEY m_Key;
};
class CBCEncryption
{
public:
CBCEncryption () { memset ((uint8_t *)m_LastBlock, 0, 16); };
void SetKey (const AESKey& key) { m_ECBEncryption.SetKey (key); }; // 32 bytes
void SetIV (const uint8_t * iv) { memcpy ((uint8_t *)m_LastBlock, iv, 16); }; // 16 bytes
void GetIV (uint8_t * iv) const { memcpy (iv, (const uint8_t *)m_LastBlock, 16); };
void Encrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out);
void Encrypt (const uint8_t * in, std::size_t len, uint8_t * out);
void Encrypt (const uint8_t * in, uint8_t * out); // one block
ECBEncryption & ECB() { return m_ECBEncryption; }
private:
AESAlignedBuffer<16> m_LastBlock;
ECBEncryption m_ECBEncryption;
};
class CBCDecryption
{
public:
CBCDecryption () { memset ((uint8_t *)m_IV, 0, 16); };
void SetKey (const AESKey& key) { m_ECBDecryption.SetKey (key); }; // 32 bytes
void SetIV (const uint8_t * iv) { memcpy ((uint8_t *)m_IV, iv, 16); }; // 16 bytes
void GetIV (uint8_t * iv) const { memcpy (iv, (const uint8_t *)m_IV, 16); };
void Decrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out);
void Decrypt (const uint8_t * in, std::size_t len, uint8_t * out);
void Decrypt (const uint8_t * in, uint8_t * out); // one block
ECBDecryption & ECB() { return m_ECBDecryption; }
private:
AESAlignedBuffer<16> m_IV;
ECBDecryption m_ECBDecryption;
};
class TunnelEncryption // with double IV encryption
{
public:
void SetKeys (const AESKey& layerKey, const AESKey& ivKey)
{
m_LayerEncryption.SetKey (layerKey);
m_IVEncryption.SetKey (ivKey);
}
void Encrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data)
private:
ECBEncryption m_IVEncryption;
CBCEncryption m_LayerEncryption;
};
class TunnelDecryption // with double IV encryption
{
public:
void SetKeys (const AESKey& layerKey, const AESKey& ivKey)
{
m_LayerDecryption.SetKey (layerKey);
m_IVDecryption.SetKey (ivKey);
}
void Decrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data)
private:
ECBDecryption m_IVDecryption;
CBCDecryption m_LayerDecryption;
};
// AEAD/ChaCha20/Poly1305
bool AEADChaCha20Poly1305 (const uint8_t * msg, size_t msgLen, const uint8_t * ad, size_t adLen, const uint8_t * key, const uint8_t * nonce, uint8_t * buf, size_t len, bool encrypt); // msgLen is len without tag
void AEADChaCha20Poly1305Encrypt (const std::vector<std::pair<uint8_t *, size_t> >& bufs, const uint8_t * key, const uint8_t * nonce, uint8_t * mac); // encrypt multiple buffers with zero ad
// ChaCha20
void ChaCha20 (const uint8_t * msg, size_t msgLen, const uint8_t * key, const uint8_t * nonce, uint8_t * out);
// HKDF
void HKDF (const uint8_t * salt, const uint8_t * key, size_t keyLen, const std::string& info, uint8_t * out, size_t outLen = 64); // salt - 32, out - 32 or 64, info <= 32
// Noise
struct NoiseSymmetricState
{
uint8_t m_H[32] /*h*/, m_CK[64] /*[ck, k]*/;
void MixHash (const uint8_t * buf, size_t len);
void MixHash (const std::vector<std::pair<uint8_t *, size_t> >& bufs);
void MixKey (const uint8_t * sharedSecret);
};
void InitNoiseNState (NoiseSymmetricState& state, const uint8_t * pub); // Noise_N (tunnels, router)
void InitNoiseXKState (NoiseSymmetricState& state, const uint8_t * pub); // Noise_XK (NTCP2)
void InitNoiseXKState1 (NoiseSymmetricState& state, const uint8_t * pub); // Noise_XK (SSU2)
void InitNoiseIKState (NoiseSymmetricState& state, const uint8_t * pub); // Noise_IK (ratchets)
// init and terminate
void InitCrypto (bool precomputation, bool aesni, bool force);
void TerminateCrypto ();
}
}
#endif