yggdrasil-go/src/yggdrasil/tcp.go

410 lines
12 KiB
Go
Raw Normal View History

2017-12-29 07:16:20 +03:00
package yggdrasil
// This sends packets to peers using TCP as a transport
// It's generally better tested than the UDP implementation
// Using it regularly is insane, but I find TCP easier to test/debug with it
// Updating and optimizing the UDP version is a higher priority
// TODO:
// Something needs to make sure we're getting *valid* packets
// Could be used to DoS (connect, give someone else's keys, spew garbage)
// I guess the "peer" part should watch for link packets, disconnect?
// TCP connections start with a metadata exchange.
// It involves exchanging version numbers and crypto keys
// See version.go for version metadata format
2018-06-13 01:50:08 +03:00
import (
"errors"
"fmt"
2018-06-21 18:39:43 +03:00
"math/rand"
2018-06-13 01:50:08 +03:00
"net"
2018-06-23 09:10:18 +03:00
"sort"
2018-06-13 01:50:08 +03:00
"sync"
"sync/atomic"
"time"
"golang.org/x/net/proxy"
)
2017-12-29 07:16:20 +03:00
2018-01-05 01:37:51 +03:00
const tcp_msgSize = 2048 + 65535 // TODO figure out what makes sense
const tcp_timeout = 6 * time.Second
2017-12-29 07:16:20 +03:00
// Wrapper function for non tcp/ip connections.
2018-04-19 17:30:40 +03:00
func setNoDelay(c net.Conn, delay bool) {
tcp, ok := c.(*net.TCPConn)
if ok {
tcp.SetNoDelay(delay)
}
}
// The TCP listener and information about active TCP connections, to avoid duplication.
2017-12-29 07:16:20 +03:00
type tcpInterface struct {
2018-01-05 01:37:51 +03:00
core *Core
2018-04-19 17:30:40 +03:00
serv net.Listener
2018-01-05 01:37:51 +03:00
mutex sync.Mutex // Protecting the below
calls map[string]struct{}
2018-02-18 05:44:23 +03:00
conns map[tcpInfo](chan struct{})
2017-12-29 07:16:20 +03:00
}
// This is used as the key to a map that tracks existing connections, to prevent multiple connections to the same keys and local/remote address pair from occuring.
// Different address combinations are allowed, so multi-homing is still technically possible (but not necessarily advisable).
2018-02-18 05:44:23 +03:00
type tcpInfo struct {
box boxPubKey
sig sigPubKey
2018-04-20 15:41:09 +03:00
localAddr string
remoteAddr string
2017-12-29 07:16:20 +03:00
}
// Returns the address of the listener.
2018-05-28 00:13:37 +03:00
func (iface *tcpInterface) getAddr() *net.TCPAddr {
return iface.serv.Addr().(*net.TCPAddr)
}
// Attempts to initiate a connection to the provided address.
2018-05-28 00:13:37 +03:00
func (iface *tcpInterface) connect(addr string) {
2018-06-14 17:11:34 +03:00
iface.call(addr, nil)
2018-05-28 00:13:37 +03:00
}
// Attempst to initiate a connection to the provided address, viathe provided socks proxy address.
2018-05-28 00:13:37 +03:00
func (iface *tcpInterface) connectSOCKS(socksaddr, peeraddr string) {
iface.call(peeraddr, &socksaddr)
2018-05-28 00:13:37 +03:00
}
// Initializes the struct.
2018-04-19 17:30:40 +03:00
func (iface *tcpInterface) init(core *Core, addr string) (err error) {
2018-01-05 01:37:51 +03:00
iface.core = core
2018-04-19 17:30:40 +03:00
iface.serv, err = net.Listen("tcp", addr)
if err == nil {
iface.calls = make(map[string]struct{})
iface.conns = make(map[tcpInfo](chan struct{}))
go iface.listener()
2018-01-05 01:37:51 +03:00
}
2018-05-28 00:13:37 +03:00
return err
2017-12-29 07:16:20 +03:00
}
// Runs the listener, which spawns off goroutines for incoming connections.
2017-12-29 07:16:20 +03:00
func (iface *tcpInterface) listener() {
2018-01-05 01:37:51 +03:00
defer iface.serv.Close()
iface.core.log.Println("Listening for TCP on:", iface.serv.Addr().String())
2018-01-05 01:37:51 +03:00
for {
2018-04-19 17:30:40 +03:00
sock, err := iface.serv.Accept()
2018-01-05 01:37:51 +03:00
if err != nil {
panic(err)
}
go iface.handler(sock, true)
2018-01-05 01:37:51 +03:00
}
2017-12-29 07:16:20 +03:00
}
// Checks if a connection already exists.
// If not, it adds it to the list of active outgoing calls (to block future attempts) and dials the address.
// If the dial is successful, it launches the handler.
// When finished, it removes the outgoing call, so reconnection attempts can be made later.
// This all happens in a separate goroutine that it spawns.
func (iface *tcpInterface) call(saddr string, socksaddr *string) {
2018-01-05 01:37:51 +03:00
go func() {
quit := false
iface.mutex.Lock()
if _, isIn := iface.calls[saddr]; isIn {
quit = true
} else {
iface.calls[saddr] = struct{}{}
defer func() {
// Block new calls for a little while, to mitigate livelock scenarios
time.Sleep(tcp_timeout)
2018-06-21 18:39:43 +03:00
time.Sleep(time.Duration(rand.Intn(1000)) * time.Millisecond)
2018-01-05 01:37:51 +03:00
iface.mutex.Lock()
delete(iface.calls, saddr)
iface.mutex.Unlock()
}()
}
iface.mutex.Unlock()
2018-06-14 17:11:34 +03:00
if quit {
return
}
var conn net.Conn
var err error
if socksaddr != nil {
var dialer proxy.Dialer
dialer, err = proxy.SOCKS5("tcp", *socksaddr, nil, proxy.Direct)
if err != nil {
return
}
2018-06-14 17:11:34 +03:00
conn, err = dialer.Dial("tcp", saddr)
if err != nil {
return
}
conn = &wrappedConn{
c: conn,
raddr: &wrappedAddr{
network: "tcp",
addr: saddr,
},
}
} else {
conn, err = net.Dial("tcp", saddr)
2018-01-05 01:37:51 +03:00
if err != nil {
return
}
}
2018-06-14 17:11:34 +03:00
iface.handler(conn, false)
2018-01-05 01:37:51 +03:00
}()
2017-12-29 07:16:20 +03:00
}
// This exchanges/checks connection metadata, sets up the peer struct, sets up the writer goroutine, and then runs the reader within the current goroutine.
// It defers a bunch of cleanup stuff to tear down all of these things when the reader exists (e.g. due to a closed connection or a timeout).
func (iface *tcpInterface) handler(sock net.Conn, incoming bool) {
2018-01-05 01:37:51 +03:00
defer sock.Close()
// Get our keys
myLinkPub, myLinkPriv := newBoxKeys() // ephemeral link keys
meta := version_getBaseMetadata()
meta.box = iface.core.boxPub
meta.sig = iface.core.sigPub
meta.link = *myLinkPub
metaBytes := meta.encode()
_, err := sock.Write(metaBytes)
2018-01-05 01:37:51 +03:00
if err != nil {
return
}
timeout := time.Now().Add(tcp_timeout)
2018-01-05 01:37:51 +03:00
sock.SetReadDeadline(timeout)
2018-06-10 02:38:30 +03:00
_, err = sock.Read(metaBytes)
2018-01-05 01:37:51 +03:00
if err != nil {
return
}
meta = version_metadata{} // Reset to zero value
2018-06-10 02:38:30 +03:00
if !meta.decode(metaBytes) || !meta.check() {
// Failed to decode and check the metadata
// If it's a version mismatch issue, then print an error message
base := version_getBaseMetadata()
if meta.meta == base.meta {
if meta.ver > base.ver {
iface.core.log.Println("Failed to connect to node:", sock.RemoteAddr().String(), "version:", meta.ver)
} else if meta.ver == base.ver && meta.minorVer > base.minorVer {
iface.core.log.Println("Failed to connect to node:", sock.RemoteAddr().String(), "version:", fmt.Sprintf("%d.%d", meta.ver, meta.minorVer))
}
}
2018-06-10 02:38:30 +03:00
// TODO? Block forever to prevent future connection attempts? suppress future messages about the same node?
2018-01-05 01:37:51 +03:00
return
}
info := tcpInfo{ // used as a map key, so don't include ephemeral link key
box: meta.box,
sig: meta.sig,
}
2018-01-05 01:37:51 +03:00
// Quit the parent call if this is a connection to ourself
equiv := func(k1, k2 []byte) bool {
for idx := range k1 {
if k1[idx] != k2[idx] {
return false
}
}
return true
}
2018-02-18 05:44:23 +03:00
if equiv(info.box[:], iface.core.boxPub[:]) {
2018-01-05 01:37:51 +03:00
return
2018-06-13 01:50:08 +03:00
}
2018-02-18 05:44:23 +03:00
if equiv(info.sig[:], iface.core.sigPub[:]) {
2018-01-05 01:37:51 +03:00
return
}
// Check if we're authorized to connect to this key / IP
if incoming && !iface.core.peers.isAllowedEncryptionPublicKey(&info.box) {
// Allow unauthorized peers if they're link-local
raddrStr, _, _ := net.SplitHostPort(sock.RemoteAddr().String())
raddr := net.ParseIP(raddrStr)
if !raddr.IsLinkLocalUnicast() {
return
}
}
2018-02-18 05:44:23 +03:00
// Check if we already have a connection to this node, close and block if yes
2018-04-20 15:41:09 +03:00
info.localAddr, _, _ = net.SplitHostPort(sock.LocalAddr().String())
info.remoteAddr, _, _ = net.SplitHostPort(sock.RemoteAddr().String())
2018-02-18 05:44:23 +03:00
iface.mutex.Lock()
if blockChan, isIn := iface.conns[info]; isIn {
iface.mutex.Unlock()
sock.Close()
<-blockChan
return
}
blockChan := make(chan struct{})
iface.conns[info] = blockChan
iface.mutex.Unlock()
defer func() {
iface.mutex.Lock()
delete(iface.conns, info)
iface.mutex.Unlock()
close(blockChan)
}()
2018-01-05 01:37:51 +03:00
// Note that multiple connections to the same node are allowed
// E.g. over different interfaces
p := iface.core.peers.newPeer(&info.box, &info.sig, getSharedKey(myLinkPriv, &meta.link))
p.linkOut = make(chan []byte, 1)
2018-01-05 01:37:51 +03:00
in := func(bs []byte) {
p.handlePacket(bs)
2018-01-05 01:37:51 +03:00
}
out := make(chan []byte, 1024) // Should be effectively infinite, but gets fed into finite LIFO stack
2018-01-05 01:37:51 +03:00
defer close(out)
go func() {
var shadow int64
2018-01-05 01:37:51 +03:00
var stack [][]byte
put := func(msg []byte) {
stack = append(stack, msg)
2018-06-23 09:10:18 +03:00
sort.SliceStable(stack, func(i, j int) bool {
// Sort in reverse order, with smallest messages at the end
return len(stack[i]) >= len(stack[j])
})
for len(stack) > 32 {
2018-01-05 01:37:51 +03:00
util_putBytes(stack[0])
stack = stack[1:]
shadow++
2018-01-05 01:37:51 +03:00
}
}
send := make(chan []byte)
defer close(send)
go func() {
for msg := range send {
msgLen := wire_encode_uint64(uint64(len(msg)))
buf := net.Buffers{tcp_msg[:], msgLen, msg}
buf.WriteTo(sock)
atomic.AddUint64(&p.bytesSent, uint64(len(tcp_msg)+len(msgLen)+len(msg)))
util_putBytes(msg)
}
}()
timerInterval := tcp_timeout * 2 / 3
2018-06-08 00:49:51 +03:00
timer := time.NewTimer(timerInterval)
defer timer.Stop()
for {
if shadow != 0 {
p.updateQueueSize(-shadow)
shadow = 0
}
2018-06-08 00:49:51 +03:00
timer.Stop()
select {
case <-timer.C:
default:
}
timer.Reset(timerInterval)
select {
2018-06-08 00:49:51 +03:00
case _ = <-timer.C:
send <- nil // TCP keep-alive traffic
case msg := <-p.linkOut:
send <- msg
case msg, ok := <-out:
if !ok {
return
}
put(msg)
}
2018-01-05 01:37:51 +03:00
for len(stack) > 0 {
// First make sure linkOut gets sent first, if it's non-empty
select {
case msg := <-p.linkOut:
send <- msg
continue
default:
}
// Then block until we send or receive something
2018-01-05 01:37:51 +03:00
select {
case msg := <-p.linkOut:
send <- msg
2018-01-05 01:37:51 +03:00
case msg, ok := <-out:
if !ok {
return
}
put(msg)
case send <- stack[len(stack)-1]:
stack = stack[:len(stack)-1]
p.updateQueueSize(-1)
2018-01-05 01:37:51 +03:00
}
}
}
}()
p.out = func(msg []byte) {
p.updateQueueSize(1)
2018-01-05 01:37:51 +03:00
defer func() { recover() }()
out <- msg
2018-01-05 01:37:51 +03:00
}
p.close = func() { sock.Close() }
2018-04-19 17:30:40 +03:00
setNoDelay(sock, true)
go p.linkLoop()
2018-01-05 01:37:51 +03:00
defer func() {
// Put all of our cleanup here...
p.core.peers.removePeer(p.port)
2018-01-05 01:37:51 +03:00
}()
2018-04-20 15:41:09 +03:00
them, _, _ := net.SplitHostPort(sock.RemoteAddr().String())
2018-02-18 05:44:23 +03:00
themNodeID := getNodeID(&info.box)
2018-01-05 01:37:51 +03:00
themAddr := address_addrForNodeID(themNodeID)
themAddrString := net.IP(themAddr[:]).String()
themString := fmt.Sprintf("%s@%s", themAddrString, them)
iface.core.log.Println("Connected:", themString)
iface.reader(sock, in) // In this goroutine, because of defers
iface.core.log.Println("Disconnected:", themString)
return
2017-12-29 07:16:20 +03:00
}
// This reads from the socket into a []byte buffer for incomping messages.
// It copies completed messages out of the cache into a new slice, and passes them to the peer struct via the provided `in func([]byte)` argument.
// Then it shifts the incomplete fragments of data forward so future reads won't overwrite it.
2018-04-19 17:30:40 +03:00
func (iface *tcpInterface) reader(sock net.Conn, in func([]byte)) {
2018-01-05 01:37:51 +03:00
bs := make([]byte, 2*tcp_msgSize)
frag := bs[:0]
for {
timeout := time.Now().Add(tcp_timeout)
2018-01-05 01:37:51 +03:00
sock.SetReadDeadline(timeout)
n, err := sock.Read(bs[len(frag):])
if err != nil || n == 0 {
break
}
frag = bs[:len(frag)+n]
for {
msg, ok, err := tcp_chop_msg(&frag)
if err != nil {
return
}
if !ok {
break
} // We didn't get the whole message yet
newMsg := append(util_getBytes(), msg...)
in(newMsg)
util_yield()
}
frag = append(bs[:0], frag...)
}
2017-12-29 07:16:20 +03:00
}
////////////////////////////////////////////////////////////////////////////////
// These are 4 bytes of padding used to catch if something went horribly wrong with the tcp connection.
2017-12-29 07:16:20 +03:00
var tcp_msg = [...]byte{0xde, 0xad, 0xb1, 0x75} // "dead bits"
// This takes a pointer to a slice as an argument.
// It checks if there's a complete message and, if so, slices out those parts and returns the message, true, and nil.
// If there's no error, but also no complete message, it returns nil, false, and nil.
// If there's an error, it returns nil, false, and the error, which the reader then handles (currently, by returning from the reader, which causes the connection to close).
2017-12-29 07:16:20 +03:00
func tcp_chop_msg(bs *[]byte) ([]byte, bool, error) {
2018-01-05 01:37:51 +03:00
// Returns msg, ok, err
if len(*bs) < len(tcp_msg) {
return nil, false, nil
}
for idx := range tcp_msg {
if (*bs)[idx] != tcp_msg[idx] {
return nil, false, errors.New("Bad message!")
}
}
msgLen, msgLenLen := wire_decode_uint64((*bs)[len(tcp_msg):])
if msgLen > tcp_msgSize {
return nil, false, errors.New("Oversized message!")
}
msgBegin := len(tcp_msg) + msgLenLen
msgEnd := msgBegin + int(msgLen)
if msgLenLen == 0 || len(*bs) < msgEnd {
// We don't have the full message
// Need to buffer this and wait for the rest to come in
return nil, false, nil
}
msg := (*bs)[msgBegin:msgEnd]
(*bs) = (*bs)[msgEnd:]
return msg, true, nil
2017-12-29 07:16:20 +03:00
}