package yggdrasil // This sends packets to peers using TCP as a transport // It's generally better tested than the UDP implementation // Using it regularly is insane, but I find TCP easier to test/debug with it // Updating and optimizing the UDP version is a higher priority // TODO: // Something needs to make sure we're getting *valid* packets // Could be used to DoS (connect, give someone else's keys, spew garbage) // I guess the "peer" part should watch for link packets, disconnect? // TCP connections start with a metadata exchange. // It involves exchanging version numbers and crypto keys // See version.go for version metadata format import ( "errors" "fmt" "io" "math/rand" "net" "sync" "sync/atomic" "time" "golang.org/x/net/proxy" ) const tcp_msgSize = 2048 + 65535 // TODO figure out what makes sense const tcp_timeout = 6 * time.Second // Wrapper function for non tcp/ip connections. func setNoDelay(c net.Conn, delay bool) { tcp, ok := c.(*net.TCPConn) if ok { tcp.SetNoDelay(delay) } } // The TCP listener and information about active TCP connections, to avoid duplication. type tcpInterface struct { core *Core serv net.Listener mutex sync.Mutex // Protecting the below calls map[string]struct{} conns map[tcpInfo](chan struct{}) } // This is used as the key to a map that tracks existing connections, to prevent multiple connections to the same keys and local/remote address pair from occuring. // Different address combinations are allowed, so multi-homing is still technically possible (but not necessarily advisable). type tcpInfo struct { box boxPubKey sig sigPubKey localAddr string remoteAddr string } // Returns the address of the listener. func (iface *tcpInterface) getAddr() *net.TCPAddr { return iface.serv.Addr().(*net.TCPAddr) } // Attempts to initiate a connection to the provided address. func (iface *tcpInterface) connect(addr string) { iface.call(addr, nil) } // Attempst to initiate a connection to the provided address, viathe provided socks proxy address. func (iface *tcpInterface) connectSOCKS(socksaddr, peeraddr string) { iface.call(peeraddr, &socksaddr) } // Initializes the struct. func (iface *tcpInterface) init(core *Core, addr string) (err error) { iface.core = core iface.serv, err = net.Listen("tcp", addr) if err == nil { iface.calls = make(map[string]struct{}) iface.conns = make(map[tcpInfo](chan struct{})) go iface.listener() } return err } // Runs the listener, which spawns off goroutines for incoming connections. func (iface *tcpInterface) listener() { defer iface.serv.Close() iface.core.log.Println("Listening for TCP on:", iface.serv.Addr().String()) for { sock, err := iface.serv.Accept() if err != nil { panic(err) } go iface.handler(sock, true) } } // Checks if a connection already exists. // If not, it adds it to the list of active outgoing calls (to block future attempts) and dials the address. // If the dial is successful, it launches the handler. // When finished, it removes the outgoing call, so reconnection attempts can be made later. // This all happens in a separate goroutine that it spawns. func (iface *tcpInterface) call(saddr string, socksaddr *string) { go func() { quit := false iface.mutex.Lock() if _, isIn := iface.calls[saddr]; isIn { quit = true } else { iface.calls[saddr] = struct{}{} defer func() { // Block new calls for a little while, to mitigate livelock scenarios time.Sleep(tcp_timeout) time.Sleep(time.Duration(rand.Intn(1000)) * time.Millisecond) iface.mutex.Lock() delete(iface.calls, saddr) iface.mutex.Unlock() }() } iface.mutex.Unlock() if quit { return } var conn net.Conn var err error if socksaddr != nil { var dialer proxy.Dialer dialer, err = proxy.SOCKS5("tcp", *socksaddr, nil, proxy.Direct) if err != nil { return } conn, err = dialer.Dial("tcp", saddr) if err != nil { return } conn = &wrappedConn{ c: conn, raddr: &wrappedAddr{ network: "tcp", addr: saddr, }, } } else { conn, err = net.Dial("tcp", saddr) if err != nil { return } } iface.handler(conn, false) }() } // This exchanges/checks connection metadata, sets up the peer struct, sets up the writer goroutine, and then runs the reader within the current goroutine. // It defers a bunch of cleanup stuff to tear down all of these things when the reader exists (e.g. due to a closed connection or a timeout). func (iface *tcpInterface) handler(sock net.Conn, incoming bool) { defer sock.Close() // Get our keys myLinkPub, myLinkPriv := newBoxKeys() // ephemeral link keys meta := version_getBaseMetadata() meta.box = iface.core.boxPub meta.sig = iface.core.sigPub meta.link = *myLinkPub metaBytes := meta.encode() _, err := sock.Write(metaBytes) if err != nil { return } timeout := time.Now().Add(tcp_timeout) sock.SetReadDeadline(timeout) _, err = sock.Read(metaBytes) if err != nil { return } meta = version_metadata{} // Reset to zero value if !meta.decode(metaBytes) || !meta.check() { // Failed to decode and check the metadata // If it's a version mismatch issue, then print an error message base := version_getBaseMetadata() if meta.meta == base.meta { if meta.ver > base.ver { iface.core.log.Println("Failed to connect to node:", sock.RemoteAddr().String(), "version:", meta.ver) } else if meta.ver == base.ver && meta.minorVer > base.minorVer { iface.core.log.Println("Failed to connect to node:", sock.RemoteAddr().String(), "version:", fmt.Sprintf("%d.%d", meta.ver, meta.minorVer)) } } // TODO? Block forever to prevent future connection attempts? suppress future messages about the same node? return } info := tcpInfo{ // used as a map key, so don't include ephemeral link key box: meta.box, sig: meta.sig, } // Quit the parent call if this is a connection to ourself equiv := func(k1, k2 []byte) bool { for idx := range k1 { if k1[idx] != k2[idx] { return false } } return true } if equiv(info.box[:], iface.core.boxPub[:]) { return } if equiv(info.sig[:], iface.core.sigPub[:]) { return } // Check if we're authorized to connect to this key / IP if incoming && !iface.core.peers.isAllowedEncryptionPublicKey(&info.box) { // Allow unauthorized peers if they're link-local raddrStr, _, _ := net.SplitHostPort(sock.RemoteAddr().String()) raddr := net.ParseIP(raddrStr) if !raddr.IsLinkLocalUnicast() { return } } // Check if we already have a connection to this node, close and block if yes info.localAddr, _, _ = net.SplitHostPort(sock.LocalAddr().String()) info.remoteAddr, _, _ = net.SplitHostPort(sock.RemoteAddr().String()) iface.mutex.Lock() if blockChan, isIn := iface.conns[info]; isIn { iface.mutex.Unlock() sock.Close() <-blockChan return } blockChan := make(chan struct{}) iface.conns[info] = blockChan iface.mutex.Unlock() defer func() { iface.mutex.Lock() delete(iface.conns, info) iface.mutex.Unlock() close(blockChan) }() // Note that multiple connections to the same node are allowed // E.g. over different interfaces p := iface.core.peers.newPeer(&info.box, &info.sig, getSharedKey(myLinkPriv, &meta.link)) p.linkOut = make(chan []byte, 1) in := func(bs []byte) { p.handlePacket(bs) } out := make(chan []byte, 1) defer close(out) go func() { // This goroutine waits for outgoing packets, link protocol traffic, or sends idle keep-alive traffic send := func(msg []byte) { msgLen := wire_encode_uint64(uint64(len(msg))) buf := net.Buffers{tcp_msg[:], msgLen, msg} buf.WriteTo(sock) atomic.AddUint64(&p.bytesSent, uint64(len(tcp_msg)+len(msgLen)+len(msg))) util_putBytes(msg) } timerInterval := tcp_timeout * 2 / 3 timer := time.NewTimer(timerInterval) defer timer.Stop() for { select { case msg := <-p.linkOut: // Always send outgoing link traffic first, if needed send(msg) continue default: } // Otherwise wait reset the timer and wait for something to do timer.Stop() select { case <-timer.C: default: } timer.Reset(timerInterval) select { case _ = <-timer.C: send(nil) // TCP keep-alive traffic case msg := <-p.linkOut: send(msg) case msg, ok := <-out: if !ok { return } send(msg) // Block until the socket write has finished // Now inform the switch that we're ready for more traffic p.core.switchTable.idleIn <- p.port } } }() p.core.switchTable.idleIn <- p.port // Start in the idle state p.out = func(msg []byte) { defer func() { recover() }() out <- msg } p.close = func() { sock.Close() } setNoDelay(sock, true) go p.linkLoop() defer func() { // Put all of our cleanup here... p.core.peers.removePeer(p.port) }() them, _, _ := net.SplitHostPort(sock.RemoteAddr().String()) themNodeID := getNodeID(&info.box) themAddr := address_addrForNodeID(themNodeID) themAddrString := net.IP(themAddr[:]).String() themString := fmt.Sprintf("%s@%s", themAddrString, them) iface.core.log.Println("Connected:", themString) err = iface.reader(sock, in) // In this goroutine, because of defers if err == nil { iface.core.log.Println("Disconnected:", themString) } else { iface.core.log.Println("Disconnected:", themString, "with error:", err) } return } // This reads from the socket into a []byte buffer for incomping messages. // It copies completed messages out of the cache into a new slice, and passes them to the peer struct via the provided `in func([]byte)` argument. // Then it shifts the incomplete fragments of data forward so future reads won't overwrite it. func (iface *tcpInterface) reader(sock net.Conn, in func([]byte)) error { bs := make([]byte, 2*tcp_msgSize) frag := bs[:0] for { timeout := time.Now().Add(tcp_timeout) sock.SetReadDeadline(timeout) n, err := sock.Read(bs[len(frag):]) if err != nil || n == 0 { if err != io.EOF { return err } return nil } frag = bs[:len(frag)+n] for { msg, ok, err := tcp_chop_msg(&frag) if err != nil { return fmt.Errorf("Message error: %v", err) } if !ok { break } // We didn't get the whole message yet newMsg := append(util_getBytes(), msg...) in(newMsg) util_yield() } frag = append(bs[:0], frag...) } } //////////////////////////////////////////////////////////////////////////////// // These are 4 bytes of padding used to catch if something went horribly wrong with the tcp connection. var tcp_msg = [...]byte{0xde, 0xad, 0xb1, 0x75} // "dead bits" // This takes a pointer to a slice as an argument. // It checks if there's a complete message and, if so, slices out those parts and returns the message, true, and nil. // If there's no error, but also no complete message, it returns nil, false, and nil. // If there's an error, it returns nil, false, and the error, which the reader then handles (currently, by returning from the reader, which causes the connection to close). func tcp_chop_msg(bs *[]byte) ([]byte, bool, error) { // Returns msg, ok, err if len(*bs) < len(tcp_msg) { return nil, false, nil } for idx := range tcp_msg { if (*bs)[idx] != tcp_msg[idx] { return nil, false, errors.New("Bad message!") } } msgLen, msgLenLen := wire_decode_uint64((*bs)[len(tcp_msg):]) if msgLen > tcp_msgSize { return nil, false, errors.New("Oversized message!") } msgBegin := len(tcp_msg) + msgLenLen msgEnd := msgBegin + int(msgLen) if msgLenLen == 0 || len(*bs) < msgEnd { // We don't have the full message // Need to buffer this and wait for the rest to come in return nil, false, nil } msg := (*bs)[msgBegin:msgEnd] (*bs) = (*bs)[msgEnd:] return msg, true, nil }