mirror of
https://github.com/yggdrasil-network/yggdrasil-go
synced 2024-11-13 08:50:21 +03:00
352 lines
11 KiB
Go
352 lines
11 KiB
Go
package yggdrasil
|
|
|
|
// TODO cleanup, this file is kind of a mess
|
|
// Commented code should be removed
|
|
// Live code should be better commented
|
|
|
|
import (
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
)
|
|
|
|
// The peers struct represents peers with an active connection.
|
|
// Incomping packets are passed to the corresponding peer, which handles them somehow.
|
|
// In most cases, this involves passing the packet to the handler for outgoing traffic to another peer.
|
|
// In other cases, it's link protocol traffic used to build the spanning tree, in which case this checks signatures and passes the message along to the switch.
|
|
type peers struct {
|
|
core *Core
|
|
mutex sync.Mutex // Synchronize writes to atomic
|
|
ports atomic.Value //map[switchPort]*peer, use CoW semantics
|
|
authMutex sync.RWMutex
|
|
allowedEncryptionPublicKeys map[boxPubKey]struct{}
|
|
}
|
|
|
|
// Initializes the peers struct.
|
|
func (ps *peers) init(c *Core) {
|
|
ps.mutex.Lock()
|
|
defer ps.mutex.Unlock()
|
|
ps.putPorts(make(map[switchPort]*peer))
|
|
ps.core = c
|
|
ps.allowedEncryptionPublicKeys = make(map[boxPubKey]struct{})
|
|
}
|
|
|
|
// Returns true if an incoming peer connection to a key is allowed, either because the key is in the whitelist or because the whitelist is empty.
|
|
func (ps *peers) isAllowedEncryptionPublicKey(box *boxPubKey) bool {
|
|
ps.authMutex.RLock()
|
|
defer ps.authMutex.RUnlock()
|
|
_, isIn := ps.allowedEncryptionPublicKeys[*box]
|
|
return isIn || len(ps.allowedEncryptionPublicKeys) == 0
|
|
}
|
|
|
|
// Adds a key to the whitelist.
|
|
func (ps *peers) addAllowedEncryptionPublicKey(box *boxPubKey) {
|
|
ps.authMutex.Lock()
|
|
defer ps.authMutex.Unlock()
|
|
ps.allowedEncryptionPublicKeys[*box] = struct{}{}
|
|
}
|
|
|
|
// Removes a key from the whitelist.
|
|
func (ps *peers) removeAllowedEncryptionPublicKey(box *boxPubKey) {
|
|
ps.authMutex.Lock()
|
|
defer ps.authMutex.Unlock()
|
|
delete(ps.allowedEncryptionPublicKeys, *box)
|
|
}
|
|
|
|
// Gets the whitelist of allowed keys for incoming connections.
|
|
func (ps *peers) getAllowedEncryptionPublicKeys() []boxPubKey {
|
|
ps.authMutex.RLock()
|
|
defer ps.authMutex.RUnlock()
|
|
keys := make([]boxPubKey, 0, len(ps.allowedEncryptionPublicKeys))
|
|
for key := range ps.allowedEncryptionPublicKeys {
|
|
keys = append(keys, key)
|
|
}
|
|
return keys
|
|
}
|
|
|
|
// Atomically gets a map[switchPort]*peer of known peers.
|
|
func (ps *peers) getPorts() map[switchPort]*peer {
|
|
return ps.ports.Load().(map[switchPort]*peer)
|
|
}
|
|
|
|
// Stores a map[switchPort]*peer (note that you should take a mutex before store operations to avoid conflicts with other nodes attempting to read/change/store at the same time).
|
|
func (ps *peers) putPorts(ports map[switchPort]*peer) {
|
|
ps.ports.Store(ports)
|
|
}
|
|
|
|
// Information known about a peer, including thier box/sig keys, precomputed shared keys (static and ephemeral) and a handler for their outgoing traffic
|
|
type peer struct {
|
|
bytesSent uint64 // To track bandwidth usage for getPeers
|
|
bytesRecvd uint64 // To track bandwidth usage for getPeers
|
|
// BUG: sync/atomic, 32 bit platforms need the above to be the first element
|
|
core *Core
|
|
port switchPort
|
|
box boxPubKey
|
|
sig sigPubKey
|
|
shared boxSharedKey
|
|
linkShared boxSharedKey
|
|
firstSeen time.Time // To track uptime for getPeers
|
|
linkOut (chan []byte) // used for protocol traffic (to bypass queues)
|
|
doSend (chan struct{}) // tell the linkLoop to send a switchMsg
|
|
dinfo *dhtInfo // used to keep the DHT working
|
|
out func([]byte) // Set up by whatever created the peers struct, used to send packets to other nodes
|
|
close func() // Called when a peer is removed, to close the underlying connection, or via admin api
|
|
}
|
|
|
|
// Creates a new peer with the specified box, sig, and linkShared keys, using the lowest unocupied port number.
|
|
func (ps *peers) newPeer(box *boxPubKey, sig *sigPubKey, linkShared *boxSharedKey) *peer {
|
|
now := time.Now()
|
|
p := peer{box: *box,
|
|
sig: *sig,
|
|
shared: *getSharedKey(&ps.core.boxPriv, box),
|
|
linkShared: *linkShared,
|
|
firstSeen: now,
|
|
doSend: make(chan struct{}, 1),
|
|
core: ps.core}
|
|
ps.mutex.Lock()
|
|
defer ps.mutex.Unlock()
|
|
oldPorts := ps.getPorts()
|
|
newPorts := make(map[switchPort]*peer)
|
|
for k, v := range oldPorts {
|
|
newPorts[k] = v
|
|
}
|
|
for idx := switchPort(0); true; idx++ {
|
|
if _, isIn := newPorts[idx]; !isIn {
|
|
p.port = switchPort(idx)
|
|
newPorts[p.port] = &p
|
|
break
|
|
}
|
|
}
|
|
ps.putPorts(newPorts)
|
|
return &p
|
|
}
|
|
|
|
// Removes a peer for a given port, if one exists.
|
|
func (ps *peers) removePeer(port switchPort) {
|
|
if port == 0 {
|
|
return
|
|
} // Can't remove self peer
|
|
ps.core.router.doAdmin(func() {
|
|
ps.core.switchTable.forgetPeer(port)
|
|
})
|
|
ps.mutex.Lock()
|
|
oldPorts := ps.getPorts()
|
|
p, isIn := oldPorts[port]
|
|
newPorts := make(map[switchPort]*peer)
|
|
for k, v := range oldPorts {
|
|
newPorts[k] = v
|
|
}
|
|
delete(newPorts, port)
|
|
ps.putPorts(newPorts)
|
|
ps.mutex.Unlock()
|
|
if isIn {
|
|
if p.close != nil {
|
|
p.close()
|
|
}
|
|
close(p.doSend)
|
|
}
|
|
}
|
|
|
|
// If called, sends a notification to each peer that they should send a new switch message.
|
|
// Mainly called by the switch after an update.
|
|
func (ps *peers) sendSwitchMsgs() {
|
|
ports := ps.getPorts()
|
|
for _, p := range ports {
|
|
if p.port == 0 {
|
|
continue
|
|
}
|
|
p.doSendSwitchMsgs()
|
|
}
|
|
}
|
|
|
|
// If called, sends a notification to the peer's linkLoop to trigger a switchMsg send.
|
|
// Mainly called by sendSwitchMsgs or during linkLoop startup.
|
|
func (p *peer) doSendSwitchMsgs() {
|
|
defer func() { recover() }() // In case there's a race with close(p.doSend)
|
|
select {
|
|
case p.doSend <- struct{}{}:
|
|
default:
|
|
}
|
|
}
|
|
|
|
// This must be launched in a separate goroutine by whatever sets up the peer struct.
|
|
// It handles link protocol traffic.
|
|
func (p *peer) linkLoop() {
|
|
go p.doSendSwitchMsgs()
|
|
tick := time.NewTicker(time.Second)
|
|
defer tick.Stop()
|
|
for {
|
|
select {
|
|
case _, ok := <-p.doSend:
|
|
if !ok {
|
|
return
|
|
}
|
|
p.sendSwitchMsg()
|
|
case _ = <-tick.C:
|
|
pdinfo := p.dinfo // FIXME this is a bad workarond NPE on the next line
|
|
if pdinfo != nil {
|
|
dinfo := *pdinfo
|
|
p.core.dht.peers <- &dinfo
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Called to handle incoming packets.
|
|
// Passes the packet to a handler for that packet type.
|
|
func (p *peer) handlePacket(packet []byte) {
|
|
// FIXME this is off by stream padding and msg length overhead, should be done in tcp.go
|
|
atomic.AddUint64(&p.bytesRecvd, uint64(len(packet)))
|
|
pType, pTypeLen := wire_decode_uint64(packet)
|
|
if pTypeLen == 0 {
|
|
return
|
|
}
|
|
switch pType {
|
|
case wire_Traffic:
|
|
p.handleTraffic(packet, pTypeLen)
|
|
case wire_ProtocolTraffic:
|
|
p.handleTraffic(packet, pTypeLen)
|
|
case wire_LinkProtocolTraffic:
|
|
p.handleLinkTraffic(packet)
|
|
default:
|
|
util_putBytes(packet)
|
|
}
|
|
}
|
|
|
|
// Called to handle traffic or protocolTraffic packets.
|
|
// In either case, this reads from the coords of the packet header, does a switch lookup, and forwards to the next node.
|
|
func (p *peer) handleTraffic(packet []byte, pTypeLen int) {
|
|
if p.port != 0 && p.dinfo == nil {
|
|
// Drop traffic until the peer manages to send us at least one good switchMsg
|
|
return
|
|
}
|
|
p.core.switchTable.packetIn <- packet
|
|
}
|
|
|
|
// This just calls p.out(packet) for now.
|
|
func (p *peer) sendPacket(packet []byte) {
|
|
// Is there ever a case where something more complicated is needed?
|
|
// What if p.out blocks?
|
|
p.out(packet)
|
|
}
|
|
|
|
// This wraps the packet in the inner (ephemeral) and outer (permanent) crypto layers.
|
|
// It sends it to p.linkOut, which bypasses the usual packet queues.
|
|
func (p *peer) sendLinkPacket(packet []byte) {
|
|
innerPayload, innerNonce := boxSeal(&p.linkShared, packet, nil)
|
|
innerLinkPacket := wire_linkProtoTrafficPacket{
|
|
Nonce: *innerNonce,
|
|
Payload: innerPayload,
|
|
}
|
|
outerPayload := innerLinkPacket.encode()
|
|
bs, nonce := boxSeal(&p.shared, outerPayload, nil)
|
|
linkPacket := wire_linkProtoTrafficPacket{
|
|
Nonce: *nonce,
|
|
Payload: bs,
|
|
}
|
|
packet = linkPacket.encode()
|
|
p.linkOut <- packet
|
|
}
|
|
|
|
// Decrypts the outer (permanent) and inner (ephemeral) crypto layers on link traffic.
|
|
// Identifies the link traffic type and calls the appropriate handler.
|
|
func (p *peer) handleLinkTraffic(bs []byte) {
|
|
packet := wire_linkProtoTrafficPacket{}
|
|
if !packet.decode(bs) {
|
|
return
|
|
}
|
|
outerPayload, isOK := boxOpen(&p.shared, packet.Payload, &packet.Nonce)
|
|
if !isOK {
|
|
return
|
|
}
|
|
innerPacket := wire_linkProtoTrafficPacket{}
|
|
if !innerPacket.decode(outerPayload) {
|
|
return
|
|
}
|
|
payload, isOK := boxOpen(&p.linkShared, innerPacket.Payload, &innerPacket.Nonce)
|
|
if !isOK {
|
|
return
|
|
}
|
|
pType, pTypeLen := wire_decode_uint64(payload)
|
|
if pTypeLen == 0 {
|
|
return
|
|
}
|
|
switch pType {
|
|
case wire_SwitchMsg:
|
|
p.handleSwitchMsg(payload)
|
|
default:
|
|
util_putBytes(bs)
|
|
}
|
|
}
|
|
|
|
// Gets a switchMsg from the switch, adds signed next-hop info for this peer, and sends it to them.
|
|
func (p *peer) sendSwitchMsg() {
|
|
msg := p.core.switchTable.getMsg()
|
|
if msg == nil {
|
|
return
|
|
}
|
|
bs := getBytesForSig(&p.sig, msg)
|
|
msg.Hops = append(msg.Hops, switchMsgHop{
|
|
Port: p.port,
|
|
Next: p.sig,
|
|
Sig: *sign(&p.core.sigPriv, bs),
|
|
})
|
|
packet := msg.encode()
|
|
p.sendLinkPacket(packet)
|
|
}
|
|
|
|
// Handles a switchMsg from the peer, checking signatures and passing good messages to the switch.
|
|
// Also creates a dhtInfo struct and arranges for it to be added to the dht (this is how dht bootstrapping begins).
|
|
func (p *peer) handleSwitchMsg(packet []byte) {
|
|
var msg switchMsg
|
|
if !msg.decode(packet) {
|
|
return
|
|
}
|
|
if len(msg.Hops) < 1 {
|
|
p.core.peers.removePeer(p.port)
|
|
}
|
|
var loc switchLocator
|
|
prevKey := msg.Root
|
|
for idx, hop := range msg.Hops {
|
|
// Check signatures and collect coords for dht
|
|
sigMsg := msg
|
|
sigMsg.Hops = msg.Hops[:idx]
|
|
loc.coords = append(loc.coords, hop.Port)
|
|
bs := getBytesForSig(&hop.Next, &sigMsg)
|
|
if !p.core.sigs.check(&prevKey, &hop.Sig, bs) {
|
|
p.core.peers.removePeer(p.port)
|
|
}
|
|
prevKey = hop.Next
|
|
}
|
|
p.core.switchTable.handleMsg(&msg, p.port)
|
|
if !p.core.switchTable.checkRoot(&msg) {
|
|
// Bad switch message
|
|
// Stop forwarding traffic from it
|
|
// Stop refreshing it in the DHT
|
|
p.dinfo = nil
|
|
return
|
|
}
|
|
// Pass a mesage to the dht informing it that this peer (still) exists
|
|
loc.coords = loc.coords[:len(loc.coords)-1]
|
|
dinfo := dhtInfo{
|
|
key: p.box,
|
|
coords: loc.getCoords(),
|
|
}
|
|
p.core.dht.peers <- &dinfo
|
|
p.dinfo = &dinfo
|
|
}
|
|
|
|
// This generates the bytes that we sign or check the signature of for a switchMsg.
|
|
// It begins with the next node's key, followed by the root and the timetsamp, followed by coords being advertised to the next node.
|
|
func getBytesForSig(next *sigPubKey, msg *switchMsg) []byte {
|
|
var loc switchLocator
|
|
for _, hop := range msg.Hops {
|
|
loc.coords = append(loc.coords, hop.Port)
|
|
}
|
|
bs := append([]byte(nil), next[:]...)
|
|
bs = append(bs, msg.Root[:]...)
|
|
bs = append(bs, wire_encode_uint64(wire_intToUint(msg.TStamp))...)
|
|
bs = append(bs, wire_encode_coords(loc.getCoords())...)
|
|
return bs
|
|
}
|