mirror of
https://github.com/yggdrasil-network/yggdrasil-go
synced 2024-11-13 08:50:21 +03:00
389 lines
11 KiB
Go
389 lines
11 KiB
Go
package yggdrasil
|
|
|
|
// TODO cleanup, this file is kind of a mess
|
|
// Commented code should be removed
|
|
// Live code should be better commented
|
|
|
|
// FIXME (!) this part may be at least sligtly vulnerable to replay attacks
|
|
// The switch message part should catch / drop old tstamps
|
|
// So the damage is limited
|
|
// But you could still mess up msgAnc / msgHops and break some things there
|
|
// It needs to ignore messages with a lower seq
|
|
// Probably best to start setting seq to a timestamp in that case...
|
|
|
|
// FIXME (!?) if it takes too long to communicate all the msgHops, then things hit a horizon
|
|
// That could happen with a peer over a high-latency link, with many msgHops
|
|
// Possible workarounds:
|
|
// 1. Pre-emptively send all hops when one is requested, or after any change
|
|
// Maybe requires changing how the throttle works and msgHops are saved
|
|
// In case some arrive out of order or are dropped
|
|
// This is relatively easy to implement, but could be wasteful
|
|
// 2. Save your old locator, sigs, etc, so you can respond to older ancs
|
|
// And finish requesting an old anc before updating to a new one
|
|
// But that may lead to other issues if not done carefully...
|
|
|
|
import "time"
|
|
import "sync"
|
|
import "sync/atomic"
|
|
|
|
//import "fmt"
|
|
|
|
type peers struct {
|
|
core *Core
|
|
mutex sync.Mutex // Synchronize writes to atomic
|
|
ports atomic.Value //map[Port]*peer, use CoW semantics
|
|
//ports map[Port]*peer
|
|
authMutex sync.RWMutex
|
|
allowedEncryptionPublicKeys map[boxPubKey]struct{}
|
|
}
|
|
|
|
func (ps *peers) init(c *Core) {
|
|
ps.mutex.Lock()
|
|
defer ps.mutex.Unlock()
|
|
ps.putPorts(make(map[switchPort]*peer))
|
|
ps.core = c
|
|
ps.allowedEncryptionPublicKeys = make(map[boxPubKey]struct{})
|
|
}
|
|
|
|
func (ps *peers) isAllowedEncryptionPublicKey(box *boxPubKey) bool {
|
|
ps.authMutex.RLock()
|
|
defer ps.authMutex.RUnlock()
|
|
_, isIn := ps.allowedEncryptionPublicKeys[*box]
|
|
return isIn || len(ps.allowedEncryptionPublicKeys) == 0
|
|
}
|
|
|
|
func (ps *peers) addAllowedEncryptionPublicKey(box *boxPubKey) {
|
|
ps.authMutex.Lock()
|
|
defer ps.authMutex.Unlock()
|
|
ps.allowedEncryptionPublicKeys[*box] = struct{}{}
|
|
}
|
|
|
|
func (ps *peers) removeAllowedEncryptionPublicKey(box *boxPubKey) {
|
|
ps.authMutex.Lock()
|
|
defer ps.authMutex.Unlock()
|
|
delete(ps.allowedEncryptionPublicKeys, *box)
|
|
}
|
|
|
|
func (ps *peers) getAllowedEncryptionPublicKeys() []boxPubKey {
|
|
ps.authMutex.RLock()
|
|
defer ps.authMutex.RUnlock()
|
|
keys := make([]boxPubKey, 0, len(ps.allowedEncryptionPublicKeys))
|
|
for key := range ps.allowedEncryptionPublicKeys {
|
|
keys = append(keys, key)
|
|
}
|
|
return keys
|
|
}
|
|
|
|
func (ps *peers) getPorts() map[switchPort]*peer {
|
|
return ps.ports.Load().(map[switchPort]*peer)
|
|
}
|
|
|
|
func (ps *peers) putPorts(ports map[switchPort]*peer) {
|
|
ps.ports.Store(ports)
|
|
}
|
|
|
|
type peer struct {
|
|
// Rolling approximation of bandwidth, in bps, used by switch, updated by packet sends
|
|
// use get/update methods only! (atomic accessors as float64)
|
|
queueSize int64
|
|
bytesSent uint64 // To track bandwidth usage for getPeers
|
|
bytesRecvd uint64 // To track bandwidth usage for getPeers
|
|
// BUG: sync/atomic, 32 bit platforms need the above to be the first element
|
|
firstSeen time.Time // To track uptime for getPeers
|
|
box boxPubKey
|
|
sig sigPubKey
|
|
shared boxSharedKey
|
|
//in <-chan []byte
|
|
//out chan<- []byte
|
|
//in func([]byte)
|
|
out func([]byte)
|
|
core *Core
|
|
port switchPort
|
|
// This is used to limit how often we perform expensive operations
|
|
throttle uint8 // TODO apply this sanely
|
|
// Called when a peer is removed, to close the underlying connection, or via admin api
|
|
close func()
|
|
// To allow the peer to call close if idle for too long
|
|
lastAnc time.Time // TODO? rename and use this
|
|
// used for protocol traffic (to bypass queues)
|
|
linkIn (chan []byte) // handlePacket sends, linkLoop recvs
|
|
linkOut (chan []byte)
|
|
lastMsg []byte // last switchMsg accepted
|
|
doSend (chan struct{}) // tell the linkLoop to send a switchMsg
|
|
}
|
|
|
|
const peer_Throttle = 1
|
|
|
|
func (p *peer) getQueueSize() int64 {
|
|
return atomic.LoadInt64(&p.queueSize)
|
|
}
|
|
|
|
func (p *peer) updateQueueSize(delta int64) {
|
|
atomic.AddInt64(&p.queueSize, delta)
|
|
}
|
|
|
|
func (ps *peers) newPeer(box *boxPubKey, sig *sigPubKey) *peer {
|
|
now := time.Now()
|
|
p := peer{box: *box,
|
|
sig: *sig,
|
|
shared: *getSharedKey(&ps.core.boxPriv, box),
|
|
lastAnc: now,
|
|
firstSeen: now,
|
|
doSend: make(chan struct{}, 1),
|
|
core: ps.core}
|
|
ps.mutex.Lock()
|
|
defer ps.mutex.Unlock()
|
|
oldPorts := ps.getPorts()
|
|
newPorts := make(map[switchPort]*peer)
|
|
for k, v := range oldPorts {
|
|
newPorts[k] = v
|
|
}
|
|
for idx := switchPort(0); true; idx++ {
|
|
if _, isIn := newPorts[idx]; !isIn {
|
|
p.port = switchPort(idx)
|
|
newPorts[p.port] = &p
|
|
break
|
|
}
|
|
}
|
|
ps.putPorts(newPorts)
|
|
return &p
|
|
}
|
|
|
|
func (ps *peers) removePeer(port switchPort) {
|
|
if port == 0 {
|
|
return
|
|
} // Can't remove self peer
|
|
ps.core.router.doAdmin(func() {
|
|
ps.core.switchTable.removePeer(port)
|
|
})
|
|
ps.mutex.Lock()
|
|
oldPorts := ps.getPorts()
|
|
p, isIn := oldPorts[port]
|
|
newPorts := make(map[switchPort]*peer)
|
|
for k, v := range oldPorts {
|
|
newPorts[k] = v
|
|
}
|
|
delete(newPorts, port)
|
|
ps.putPorts(newPorts)
|
|
ps.mutex.Unlock()
|
|
if isIn {
|
|
if p.close != nil {
|
|
p.close()
|
|
}
|
|
close(p.linkIn)
|
|
}
|
|
}
|
|
|
|
func (ps *peers) sendSwitchMsgs() {
|
|
ports := ps.getPorts()
|
|
for _, p := range ports {
|
|
if p.port == 0 {
|
|
continue
|
|
}
|
|
select {
|
|
case p.doSend <- struct{}{}:
|
|
default:
|
|
}
|
|
}
|
|
}
|
|
|
|
func (ps *peers) fixSwitchAfterPeerDisconnect() {
|
|
// TODO something better, this is very wasteful
|
|
ports := ps.getPorts()
|
|
for _, p := range ports {
|
|
if p.lastMsg == nil {
|
|
continue
|
|
}
|
|
p.handleSwitchMsg(p.lastMsg)
|
|
}
|
|
}
|
|
|
|
func (p *peer) linkLoop() {
|
|
go func() { p.doSend <- struct{}{} }()
|
|
ticker := time.NewTicker(10 * time.Second)
|
|
defer ticker.Stop()
|
|
for {
|
|
select {
|
|
case packet, ok := <-p.linkIn:
|
|
if !ok {
|
|
return
|
|
}
|
|
p.handleLinkTraffic(packet)
|
|
case <-ticker.C:
|
|
p.throttle = 0
|
|
if p.lastMsg != nil {
|
|
// TODO? remove ticker completely
|
|
// p.throttle isn't useful anymore (if they send a wrong message, remove peer instead)
|
|
// the handleMessage below is just for debugging, but it *shouldn't* be needed now that things react to state changes instantly
|
|
// The one case where it's maybe useful is if you get messages faster than the switch throttle, but that should fix itself after the next periodic update or timeout
|
|
p.handleSwitchMsg(p.lastMsg)
|
|
}
|
|
case <-p.doSend:
|
|
p.sendSwitchMsg()
|
|
}
|
|
}
|
|
}
|
|
|
|
func (p *peer) handlePacket(packet []byte) {
|
|
// TODO See comment in sendPacket about atomics technically being done wrong
|
|
atomic.AddUint64(&p.bytesRecvd, uint64(len(packet)))
|
|
pType, pTypeLen := wire_decode_uint64(packet)
|
|
if pTypeLen == 0 {
|
|
return
|
|
}
|
|
switch pType {
|
|
case wire_Traffic:
|
|
p.handleTraffic(packet, pTypeLen)
|
|
case wire_ProtocolTraffic:
|
|
p.handleTraffic(packet, pTypeLen)
|
|
case wire_LinkProtocolTraffic:
|
|
p.linkIn <- packet
|
|
default: /*panic(pType) ;*/
|
|
return
|
|
}
|
|
}
|
|
|
|
func (p *peer) handleTraffic(packet []byte, pTypeLen int) {
|
|
if p.port != 0 && p.lastMsg == nil {
|
|
// Drop traffic until the peer manages to send us at least one good switchMsg
|
|
return
|
|
}
|
|
ttl, ttlLen := wire_decode_uint64(packet[pTypeLen:])
|
|
ttlBegin := pTypeLen
|
|
ttlEnd := pTypeLen + ttlLen
|
|
coords, coordLen := wire_decode_coords(packet[ttlEnd:])
|
|
coordEnd := ttlEnd + coordLen
|
|
if coordEnd == len(packet) {
|
|
return
|
|
} // No payload
|
|
toPort, newTTL := p.core.switchTable.lookup(coords, ttl)
|
|
if toPort == p.port {
|
|
return
|
|
}
|
|
to := p.core.peers.getPorts()[toPort]
|
|
if to == nil {
|
|
return
|
|
}
|
|
// This mutates the packet in-place if the length of the TTL changes!
|
|
ttlSlice := wire_encode_uint64(newTTL)
|
|
newTTLLen := len(ttlSlice)
|
|
shift := ttlLen - newTTLLen
|
|
copy(packet[shift:], packet[:pTypeLen])
|
|
copy(packet[ttlBegin+shift:], ttlSlice)
|
|
packet = packet[shift:]
|
|
to.sendPacket(packet)
|
|
}
|
|
|
|
func (p *peer) sendPacket(packet []byte) {
|
|
// Is there ever a case where something more complicated is needed?
|
|
// What if p.out blocks?
|
|
p.out(packet)
|
|
// TODO this should really happen at the interface, to account for LIFO packet drops and additional per-packet/per-message overhead, but this should be pretty close... better to move it to the tcp/udp stuff *after* rewriting both to give a common interface
|
|
atomic.AddUint64(&p.bytesSent, uint64(len(packet)))
|
|
}
|
|
|
|
func (p *peer) sendLinkPacket(packet []byte) {
|
|
bs, nonce := boxSeal(&p.shared, packet, nil)
|
|
linkPacket := wire_linkProtoTrafficPacket{
|
|
Nonce: *nonce,
|
|
Payload: bs,
|
|
}
|
|
packet = linkPacket.encode()
|
|
p.linkOut <- packet
|
|
}
|
|
|
|
func (p *peer) handleLinkTraffic(bs []byte) {
|
|
packet := wire_linkProtoTrafficPacket{}
|
|
if !packet.decode(bs) {
|
|
return
|
|
}
|
|
payload, isOK := boxOpen(&p.shared, packet.Payload, &packet.Nonce)
|
|
if !isOK {
|
|
return
|
|
}
|
|
pType, pTypeLen := wire_decode_uint64(payload)
|
|
if pTypeLen == 0 {
|
|
return
|
|
}
|
|
switch pType {
|
|
case wire_SwitchMsg:
|
|
p.handleSwitchMsg(payload)
|
|
default: // TODO?...
|
|
}
|
|
}
|
|
|
|
func (p *peer) sendSwitchMsg() {
|
|
info, sigs := p.core.switchTable.createMessage(p.port)
|
|
var msg switchMsg
|
|
msg.Root, msg.TStamp = info.locator.root, info.locator.tstamp
|
|
for idx, sig := range sigs {
|
|
hop := switchMsgHop{
|
|
Port: info.locator.coords[idx],
|
|
Next: sig.next,
|
|
Sig: sig.sig,
|
|
}
|
|
msg.Hops = append(msg.Hops, hop)
|
|
}
|
|
bs := getBytesForSig(&p.sig, &info.locator)
|
|
msg.Hops = append(msg.Hops, switchMsgHop{
|
|
Port: p.port,
|
|
Next: p.sig,
|
|
Sig: *sign(&p.core.sigPriv, bs),
|
|
})
|
|
packet := msg.encode()
|
|
//p.core.log.Println("Encoded msg:", msg, "; bytes:", packet)
|
|
p.sendLinkPacket(packet)
|
|
}
|
|
|
|
func (p *peer) handleSwitchMsg(packet []byte) {
|
|
var msg switchMsg
|
|
msg.decode(packet)
|
|
//p.core.log.Println("Decoded msg:", msg, "; bytes:", packet)
|
|
if len(msg.Hops) < 1 {
|
|
p.throttle++
|
|
panic("FIXME testing")
|
|
return
|
|
}
|
|
var info switchMessage
|
|
var sigs []sigInfo
|
|
info.locator.root = msg.Root
|
|
info.locator.tstamp = msg.TStamp
|
|
prevKey := msg.Root
|
|
for _, hop := range msg.Hops {
|
|
// Build locator and signatures
|
|
var sig sigInfo
|
|
sig.next = hop.Next
|
|
sig.sig = hop.Sig
|
|
sigs = append(sigs, sig)
|
|
info.locator.coords = append(info.locator.coords, hop.Port)
|
|
// Check signature
|
|
bs := getBytesForSig(&sig.next, &info.locator)
|
|
if !p.core.sigs.check(&prevKey, &sig.sig, bs) {
|
|
p.throttle++
|
|
panic("FIXME testing")
|
|
return
|
|
}
|
|
prevKey = sig.next
|
|
}
|
|
info.from = p.sig
|
|
info.seq = uint64(time.Now().Unix())
|
|
p.core.switchTable.handleMessage(&info, p.port, sigs)
|
|
// Pass a mesage to the dht informing it that this peer (still) exists
|
|
l := info.locator
|
|
l.coords = l.coords[:len(l.coords)-1]
|
|
dinfo := dhtInfo{
|
|
key: p.box,
|
|
coords: l.getCoords(),
|
|
}
|
|
p.core.dht.peers <- &dinfo
|
|
p.lastMsg = packet
|
|
}
|
|
|
|
func getBytesForSig(next *sigPubKey, loc *switchLocator) []byte {
|
|
bs := append([]byte(nil), next[:]...)
|
|
bs = append(bs, loc.root[:]...)
|
|
bs = append(bs, wire_encode_uint64(wire_intToUint(loc.tstamp))...)
|
|
bs = append(bs, wire_encode_coords(loc.getCoords())...)
|
|
return bs
|
|
}
|