forked from Yesen/python_math_stat
68 lines
1.5 KiB
Python
68 lines
1.5 KiB
Python
# ДИСПЕРСИЯ
|
|
# list_data = [int(value) for value in input().split()]
|
|
# n = len(list_data)
|
|
# Sum = 0
|
|
# for value in list_data:
|
|
# Sum += value
|
|
# SUm=Sum/n
|
|
# Sum = 0
|
|
# for value in list_data:
|
|
# a = (value - SUm)**2
|
|
# Sum += a
|
|
# D = (Sum / (n - 1 ))
|
|
# print (D)
|
|
|
|
# Среднеквадратичное отклонение sd
|
|
# list_data = [int(value) for value in input().split()]
|
|
# n = len(list_data)
|
|
# Sum = 0
|
|
# for value in list_data:
|
|
# Sum += value
|
|
# SUm=Sum/n
|
|
# Sum = 0
|
|
# for value in list_data:
|
|
# a = (value - SUm)**2
|
|
# Sum += a
|
|
# D = (Sum / (n - 1 ))
|
|
# sd = D ** 0.5
|
|
# print (sd)
|
|
|
|
|
|
|
|
|
|
# находим среднее значение
|
|
def find_average(x):
|
|
return sum(x) / len(x)
|
|
|
|
|
|
# находим размах
|
|
def find_range(x):
|
|
x_copy = sorted(x)
|
|
return abs(x_copy[-1] - x_copy[0])
|
|
|
|
# находим медиану
|
|
def find_median(x):
|
|
if len(x) % 2 == 0:
|
|
return (x[len(x) // 2] + x[len(x) // 2 -1]) / 2
|
|
else:
|
|
return x[len(x) // 2]
|
|
|
|
# находим дисперсию в генеральной совокупности
|
|
def find_general_variance(x, x_average):
|
|
variance = 0
|
|
for i in x:
|
|
variance += (i - x_average) ** 2
|
|
return variance / len(x)
|
|
|
|
|
|
# находим дисперсию в выборке
|
|
def find_subgeneral_variance(x, x_average):
|
|
variance = 0
|
|
for i in x:
|
|
variance += (i - x_average) ** 2
|
|
return variance / (len(x) - 1)
|
|
|
|
|
|
# возвращаем квадрат из числа
|
|
def get_sqrt(x):
|
|
return x ** 0.5 |